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6.2.2 Synchronization and Error Detection

The AC-3 bit-steam format allows rapid synchronization. The 16-bit sync word has
a low probability offalse detection. With no input stream alignment the probability of false
detection of the sync word is 0.0015% per input stream bit position. For a bit-rate of384
kbls, the probability of false sync word detection is 19% per frame. Byte alignment of the
input stream drops this probability to 2.5%, and word alignment drops it to 1.2%.

When a sync pattern is detected the decoder may be estimated to be in sync and
one of the CRC words (crcI or crc2) may be checked. Since crcl comes first and covers
the first 5/8 of the frame, the result of a ere1 check may be available after only 5/8 of the
frame has been received. Or, the entire frame size can be received and crc2 checked. If
either CRC checks, the decoder may safely be presumed to be in sync and decoding and
reproduction of audio may proceed. The chance of false sync in this case would be the
concatenation of the probabilities of a false sync word detection and a CRC misdetection
of error. The CRC check is reliable to 0.0015%. This probability, concatenated with the
probability of a false sync detection in a byte aligned input bit stream, yield a probability of
false synchronization of 0.000035% (or about once in 3 million synchronization attempts).

If this small probability of false sync is too large for an application, there are
several methods which may reduce it. The decoder may only presume correct sync in the
case that both CRC words check properly. The decoder may require multiple sync words
to be received with the proper alignment. If the data transmission or storage system is
aware that data is in error, this information may be made known to the decoder.

Additional details on methods of bit stream synchronization are not provided in
this standard. Details on the CRC calculation are provided in Section 7.10 on page 91.

6.2.3 Unpack 8SI, Side Information

Inherent to the decoding process is the unpacking (de-multiplexing) of the various
types of information included in the bit stream. Some of these items may be copied from
the input buffer to dedicated registers, some may be copied to specific working memory
location, and some of the items may simply be located in the input buffer with pointers to
them saved to another location for use when the information is required. The information
which must be unpacked is specified in detail in Section 5.3. Further details on the
unpacking ofBSI and side information are not provided in this standard.

6.2.4 Decode Exponents

The exponents are delivered in the bit stream in an encoded form. In order to
unpack and decode the exponents two types of side information are required. First, the
number of exponents must be known. For tbw channels this may be determined from
either chbwcod[ch] (for uncoupled channels) or from cplbegf (for coupled channels). For
the coupling channel, the number of exponents may be determined from cplbegf and
cplendf. For the lfe channel (when on), there are always 7 exponents. Second, the
exponent strategy in use (DIS, etc.) by each channel must be known. The details on how
to unpack and decode exponents are provided in Section 7.1 on page 44.
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6.2.5 Bit Allocation

The bit allocation computation reveals how many bits are used for each mantissa.
The inputs to the bit allocation computation are the decoded exponents, and the bit
allocation side information. The outputs of the bit allocation computation are a set of bit
allocation pointers (haps), one bap for each coded mantissa. The bap indicates the
quantizer used for the mantissa, and how many bits in the bit stream were used for each
mantissa. The bit allocation computation is described in detail in Section 7.2 on page 49.

6.2.6 Process Mantissas

The coarsely quantized mantissas make up the bulk of the AC-3 data stream. Each
mantissa is quantized to a level of precision indicated by the corresponding bap. In order
to pack the mantissa data more efficiently, some mantissas are grouped together into a
single transmitted. value. For instance, two II-level quantized values are conveyed in a
single 7-bit code (3.5 bits/value) in the bit stream.

The mantissa data is unpacked by peeling off groups of bits as indicated by the
baps. Grouped mantissas must be ungrouped. The individual coded mantissa values are
converted into a de-quantized value. Mantissas which are indicated as having zero bits
may be reproduced as either zero, or by a random dither value (under control of the dither
flag). The mantissa processing is described in full detail in Section 7.3 on page 64.

6.2.7 De-Coupling

When coupling is in use, the channels which are coupled must be decoupled.
Decoupling involves reconstructing the high frequency Section (exponents and mantissas)
of each coupled channel, from the common coupling channel and the coupling coordinates
for the individual channel. Within each coupling band, the coupling channel coefficients
(exponent and mantissa) are multiplied by the individual channel coupling coordinates. The
coupling process is described in detail in Section 7.4 on page 68.

6.2.8 Rematrixing

In the 2/0 audio coding mode rematrixing may be employed, as indicated by the
rematrix flags (rematflg[rbnd]). Where the flag indicates a band is rematrixed, the
coefficients encoded in the bit stream are sum and difference values instead of left and
right values. Rematrixing is described in detail in Section 7.5 on page 70.

6.2.9 Dynamic Range Compression

For each block of audio a dynamic range control value (dynmg) may be included in
the bit stream. The decoder, by default, shall use this value to alter the magnitude of the
coefficient (exponent and mantissa) as specified in Section 7.7.1 on page 75.
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6.2.10 Inverse Transform

The decoding steps described above will result in a set of frequency coefficients for
each encoded channel. The inverse transform converts the blocks of frequency coefficients
into blocks of time samples. The inverse transform is detailed in Section 7.9 on page 85.

6.2.11 Window, Overlap/Add

The individual blocks of time samples must be windowed, and adjacent blocks
must be overlapped and added together in order to reconstruct the final continuous time
output PCM audio signal. The window and overlap/add steps are described along with the
inverse transform in Section 7.9 on page 85.

6.2.12 Downmixing

If the number of channels required at the decoder output is smaller than the
number of channels which are encoded in the bit stream, then downmixing is required.
Downmixing in the time domain is shown in this example decoder. Since the inverse
transform is a linear operation, it is also possible to downmix in the frequency domain
prior to transformation. Section 7.8 on page 80 describes downmixing and specifies the
downmix coefficients which decoders shall employ.

6.2.13 PCM Output Buffer

Typical decoders will provide PCM output samples at the PCM sampling rate.
Since blocks of samples result from the decoding process, an output buffer is typically
required. This standard does not specifY or describe output buffering in any further detail.

6.2.14 Output PCM

The output PCM samples may be delivered in form suitable for interconnection to
a digital to analog converter (DAC), or in any other form. This standard does not specifY
the output PCM format.
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7. ALGORITHMIC DETAILS

The following sections describe various aspects ofAC-3 coding in detail.

7.1 Exponent Coding

7.1.1 Overview

The actual audio information conveyed by the AC-3 bit stream consists of the
quantized frequency coefficients. The coefficients are delivered in floating point form, with
each coefficient consisting of an exponent and a mantissa. This section describes how the
exponents are encoded and packed into the bit stream.

Exponents are 5-bit values which indicate the number of leading zeros in the binary
representation of a frequency coefficient. The exponent acts as a scale factor for each
mantissa, equal to 2-exp. Exponent values are allowed to range from 0 (for the largest value
coefficients with no leading zeroes) to 24. Exponents for coefficients which have more
than 24 leading zeroes are fixed at 24, and the corresponding mantissas are allowed to
have leading zeros. Exponents require 5 bits in order to represent all allowed values.

AC-3 bit streams contain coded exponents for all independent channels, all coupled
channels, and for the coupling and low frequency effects channels (when they are enabled).
Since audio information is not shared across frames, block 0 of every frame will include
new exponents for every channel. Exponent information may be shared across blocks
within a frame, so blocks 1 through 5 may reuse exponents from previous blocks.

AC-3 exponent transmission employs differential coding, in which the exponents
for a channel are differentially coded across frequency. The first exponent of a fbw or Ife
channel is always sent as a 4-bit absolute value, ranging from 0-15. The value indicates the
number of leading zeros of the first (DC term) transform coefficient. Successive (going
higher in frequency) exponents are sent as differential values which must be added to the
prior exponent value in order to form the next absolute value.

The differential exponents are combined into groups in the audio block. The
grouping is done by one of three methods, D15, D25, or D45, which are referred to as
exponent strategies. The number of grouped differential exponents placed in the audio
block for a particular channel depends on the exponent strategy and on the frequency
bandwidth information for that channel. The number of exponents in each group depends
only on the exponent strategy.

An AC-3 audio block contains two types of fields with exponent information. The
first type defines the exponent coding strategy for each channel, and the second type
contains the actual coded exponents for channels requiring new exponents. For
independent channels, frequency bandwidth information is included along with the
exponent strategy fields. For coupled channels, and the coupling channel, the frequency
information is found in the coupling strategy fields.

-44-



ATSC Digital Audio Compression (AC-3) Standard 12 Apr 95

7.1.2 Exponent Strategy

Exponent strategy information for every channel is included in every AC-3 audio
block. Information is never shared across frames, so block°will always contain a strategy
indication (D15, D25, or D45) for each channel. Blocks 1 through 5 may indicate reuse of
the prior (within the same frame) exponents. The three exponent coding strategies provide
a tradeoff between data rate required for exponents, and their frequency resolution. The
D15 mode provides the finest frequency resolution, and the D45 mode requires the least
amount of data. In all three modes, a number differential exponents are combined into 7
bit words when coded into an audio block. The main difference between the modes is how
many differential exponents are combined together.

The absolute exponents found in the bit stream at the beginning of the differentially
coded exponent sets are sent as 4-bit values which have been limited in either range or
resolution in order to save one bit. For tbw and lfe channels, the initial 4-bit absolute
exponent represents a value from °to 15. Exponent values larger than 15 are limited to a
value of 15. For the coupled channel, the 5-bit absolute exponent is limited to even values,
and the lsb is not transmitted. The resolution has been limited to valid values ofO,2,4...24.
Each differential exponent can take on one of five values: -2, -1, 0, +1, +2. This allows
deltas of up to ±2 (± 12 dB) between exponents. These five values are mapped into the
values 0, 1, 2, 3, 4 before being grouped, as shown in Table 7.1.

Table 7.1 Mapping of ditTerential exponent values, D15 mode.

diffexp mapped value
+2 4
+1 3
0 2

- 1 1
-2 0

Mapped Value =Diff Exp + 2 ;
Diff Exp =Mapped Value - 2 ;

In the D15 mode, the above mapping is applied to each individual differential
exponent for coding into the bit stream. In the D25 mode, each pair of differential
exponents is represented by a single mapped value in the bit stream. In this mode the
second differential exponent of each pair is implied as a delta of°from the first element of
the pair as indicated in Table 7.2.

Table 7.2 Mapping of ditTerential exponent values, D25 mode.

diffemn diffexo n+1 mapped value
+2 0 4

+1 0 3
0 0 2
-1 0 1
-2 0 0
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The D45 mode is similar to the D25 mode except that quads of differential
exponents are represented by a single mapped value, as indicated by Table 7.3.

Table 7.3 Mapping of differential exponent values, D45 mode.

dift'exo n dUl'exon+l dift'eu n+2 dlft'em n+3 maDDed. value
+2 0 0 0 4
+1 0 0 0 3
0 0 0 0 2
-1 0 0 0 1
-2 0 0 0 0

Since a single exponent is effectively shared by 2 or 4 different mantissas, encoders
must ensure that the exponent chosen for the pair or quad is the minimum absolute value
(corresponding to the largest exponent) needed to represent all the mantissas.

For all modes, sets of three adjacent (in frequency) mapped values (Ml,M2 and
M3) are grouped together and coded as a 7 bit value according to the following formula:

Coded 7 bit Grouped Value =(25 x M1) + (5 x M2) + M3 ;

The exponent field for a given channel in an AC-3 audio block consists of a single
absolute exponent followed by a number of these grouped values.

7.1.3 Exponent Decoding

The exponent strategy for each coupled and independent channel is included in a
set of 2-bit fields designated chexpstr[ch]. When the coupling channel is present, a
cplexpstr strategy code is also included. Table 7.4 shows the mapping from exponent
strategy code into exponent strategy.

Table 7.4 Exponent strategy coding.

When the low frequency effects channel is enabled the lfeexpstr field is present. It
is decoded as shown in Table 7.5.

Table 7.5 LFE channel exponent strategy coding.

Iii

Following the exponent strategy fields in the bit stream is a set of channel
bandwidth codes, chbwcod[ch]. These are only present for independent channels (channels
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not in coupling) that have new exponents in the current block. The channel bandwidth
code defines the end mantissa bin number for that channel according to the following:

endmant[ch] = «chbwcod[ch] + 12) * 3) + 37; /"" (ch is not coupled) ",,/

For coupled channels the end mantissa bin number is defined by the starting bin
number of the coupling channel:

endmant[ch] = cplstrtmant ; /"" (ch is coupled) ./

where cplstrtmant is as derived below. By definition the starting mantissa bin number for
independent and coupled channels is O.

strtmant[ch] = 0 ;

For the coupling channe~ the frequency bandwidth information is derived from the
fields cplbegf and cplendf found in the coupling strategy information. The coupling

.channel starting and ending mantissa bins are defined as:

cplstrtmant = (cplbegf * 12) + 37 ;
cplendmant = «cplendf + 3) * 12) + 37 ;

The low frequency. effects channel, when present, always starts in bin 0 and always
has the same number ofmantissas:

Ifestrtmant = 0 ;
Ifeendmant = 7 ;

The second set of fields contains coded exponents for all channels indicated to
have new exponents in the current block. These fields are designated as exps[ch][grp] for
independent and coupled channels, cplexps[grp] for the coupling channel, and lfeexps[grp]
for the low frequency effects channel. The first element of the exps fields (exps[ch][O])
and the Ifeexps field (lfeexps[O]) is always a 4-bit absolute number. For these channels the
absolute exponent always contains the exponent value of the first transform coefficient
(bin #0). These 4 bit values correspond to a 5-bit exponent which has been limited in range
(0 to 15, instead of 0 to 24), Le., the most significant bit is zero. The absolute exponent
for the coupled channel, cplabsexp, is only used as a reference to begin decoding the
differential exponents for the coupling channel (i.e. it does not represent an actual
exponent). The cplabsexp is contained in the audio block as a 4-bit value, however it
corresponds to a 5-bit value. The LSB of the coupled channel initial exponent is always 0,
so the decoder must take the 4-bit value which was sent, and double it (left shift by 1) in
order to obtain the 5-bit starting value.

For each coded exponent set the number of grouped exponents (not including the
first absolute exponent) to decode from the bit stream is derived as follows:

For independent and coupled channels:

nchgrps[grp] = truncate «endmant[grp] - 1) /3) ; /* for 015 mode */
=truncate «endmant[grp] - 1 + 3) /6); /* for 025 mode ",,/
= truncate «endmant[grp] - 1 + 9) /12) ; /* for 045 mode ./

For the coupling channel:
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/* for DIS mode */
/* for D2S mode */
/* for D4S mode */

ncplgrps =(cplendmant - cplstrtmant) /3
=(cplendmant - cplstrtmant) /6
= (cplendmant - cplstrtmant) /12

For the low frequency effects channel:

nlfegrps = 2 ;

Decoding a set of coded grouped exponents will create a set of 5-bit absolute
exponents. The exponents are decoded as follows:

1. Each 7 bit grouping of mapped values (gexp) is decoded using the inverse of the
encoding procedure:

M1 =truncate (gexp / 25) ;
M2 = truncate «gexp % 25) / 5) ;
M3 =(gexp % 25) % 5 ;

4. Each mapped value is converted to a differential exponent (dexp) by subtracting the
mapping offset:

dexp =M - 2;

3. The set of differential exponents if converted to absolute exponents by adding each
differential exponent to the absolute exponent of the previous frequency bin:

exp(n] = exp(n-1] + dexp(n] ;

4. For the D25 and D45 modes each absolute exponent is copied to the remaining
members of the pair or quad.

The above procedure can be summarized as follows:

Pseudo code
/* unpack the mapped values */
for (grp = 0; grp < ngrps; grp++)
{

expacc = gexp[grp] ;
dexp[grp * 3] = truncate (expacc /25) ;
expacc =expacc - ( 25 * dexp[grp * 3]) ;
dexp[(grp * 3} + 1] =truncate ( expacc / 5) ;
expacc = expacc - (5 * dexp[(grp * 3) + 1)} ;
dexp(grp * 3} + 2] = expacc ;

}

. dexp[grp] = dexp[grp] - 2 ;

/* unbiased mapped values */
for (grp = 0; grp < (ngrps * 3); grp++}
{

}

/* convert from differentials to absolutes */
prevexp = absexp ;
for (i = 0; i < (ngrps * 3); i++)
{

aexp[i] = prevexp + dexp[i] ;
prevexp = aexp[i] ;
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exp[(i * grpsize) + j +1] = aexp[i] ;

'* expand to full absolute exponent array, using grpsize *'
exp(O] =absexp ;
for (i =0; i < (ngrps * 3); i++)
{

for a=0; j < grpsize; j++)
{

}
}

where,
ngrps = number of grouped exponents (nchgrps[ch], ncplgrps, or nlfegrps)
grpsize = 1 for 015

= 2 for 025
= 4 for 045

absexp = absolute exponent (exps[ch][O], (cplabsexp«1), or Ifeexps[O»

For the coupling channel the above output array, exp[n], should be offset to
correspond to the coupling start mantissa bin:

cplexp[n + cplstrtmant] = exp[n + 1] ;

For the remaining channels exp[n] will correspond directly to the absolute
exponent array for that channel.

7.2 Bit Allocation

7.2.1 Overview

The bit allocation routine analyzes the spectral envelope of the audio signal being
coded with respect to masking effects to determine the number of bits to assign to each
transform coefficient mantissa. In the encoder, the bit allocation is performed globally on
the ensemble of channels as an entity, from a common bit pool. There are no preassigned
exponent or mantissa bits, allowing the routine to flexibly allocate bits across channels,
frequencies, and audio blocks in accordance with signal demand.

The bit allocation contains a parametric model of human hearing for estimating a
noise level threshold, expressed as a function of frequency, which separates audible from
inaudible spectral components. Various parameters of the hearing model can be adjusted
by the encoder depending upon signal characteristics. For example, a prototype masking
curve is defined in terms of two piecewise continuous line segments, each with its own
slope and y-axis intercept. One of several possible slopes and intercepts is selected by the
encoder for each line segment. The encoder may iterate on one or more such parameters
until an optimal result is obtained. When all parameters used to estimate the noise level
threshold have been selected by the encoder, the final bit allocation is computed. The
model parameters are conveyed to the decoder with other side information. The decoder
executes the routine in a single pass.
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The estimated noise level threshold is computed over 50 bands of nonuniform
bandwidth (an approximate 1/6 octave scale). The banding structure, defined by tables in
the next section, is independent of sampling frequency. The required bit allocation for each
mantissa is established by performing a table lookup based upon the difference between
the input signal power spectral density (PSD) evaluated on a fine-grain uniform frequency
scale, and the estimated noise level threshold evaluated on the coarse-grain (banded)
frequency scale. Therefore, the bit allocation result for a particular channel has spectral
granularity corresponding to the exponent strategy employed. More specifically, a
separate bit allocation will be computed for each mantissa within a DIS exponent set, each
pair of mantissas within a D25 exponent set, and each quadruple of mantissas within a
D45 exponent set.

The bit allocation must be computed in the decoder whenever the exponent
strategy (chexpstr, cplexpstr, lfeexpstr) for one or more channels does not indicate reuse,
or whenever baie, snroffste, or deltbaie = 1. Accordingly, the bit allocation can be updated
at a rate ranging from once per audio block to once per 6 audio blocks, including the
integral steps in between. A complete set of new bit allocation information is always
transmitted in audio block O.

Since the parametric bit allocation routine must generate identical results in all
encoder and decoder implementations, each step is defined exactly in terms of fixed-point
integer operations and table lookups. Throughout the discussion below, signed two's
complement arithmetic is employed. All additions are performed with an accumulator of
14 or more bits. All intermediate results and stored values are 8-bit values.

7.2.2 Parametric Bit Allocation

This section describes the seven-step procedure for computing the output of the
parametric bit allocation routine in the decoder. The approach outlined here starts with a
single uncoupled or coupled exponent set and processes all the input data for each step
prior to continuing to the next one. This technique, called vertical execution, is
conceptually straightforward to describe and implement. Alternatively, the seven steps can
be executed horizontally, in which case multiple passes through all seven steps are made
for separate subsets of the input exponent set.

The choice of vertical vs. horizontal execution depends upon the relative
importance of execution time vs. memory usage in the final implementation. Vertical
execution of the algorithm is usually faster due to reduced looping and context save
overhead. However, horizontal execution requires less RAM to store the temporary arrays
generated in each step. Hybrid horizontal/vertical implementation approaches are also
possible which combine the benefits ofboth techniques.

7.2.2.1 Initialization

Compute start/end frequencies for the channel being decoded. These are computed
from parameters in the bit stream as follows:
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'* for tbw channels *'
for{ch=O; ch<nfchans; ch++)
{

strtmant[ch] = 0;
if{chincpl[ch)) endmant[ch] = 37 + (12 x cplbegf) ; '* channel is coupled *'
else endmant[ch] = 37 + (3 x (chbwcod + 12» ; '* channel is not coupled *'

}

'* for coupling channel *'
cplstrtmant = 37 + (12 x cplbegf) ;
cplendmant = 37 + (12 x (cplendf + 3» ;

'* for 1fe channel *'
Ifestartmant = 0 ;
Ifeendmant = 7 ;

Special case processing step:

Before continuing with the initialization proceduret all SNR offset parameters from
the bit stream should be evaluated. These include csnroffstt fsnroffst[ch]t cplfsnroffs~ and
Ifefsnroffst. If they are all found to be equal·to zerot then all elements of the bit allocation
pointer array bap[] should be set to zero, and no other bit allocation processing is required
for the current audio block.

Perform table lookups to determine the values of sdecaYt fdecaYt sgaint dbkneet
and floor from parameters in the bit stream as follows:

Pseudo code
sdecay = slowdec[sdcycod] ;
fdecay = fastdec[fdcycod] ;
sgain = slowgain[sgaincod] ;
dbknee = dbpbtab(dbpbcod) ;
floor = floortab[f1oorcodl ;

'* Table 7.6 */
/* Table 7.7 */
/* Table 7.8 */
/* Table 7.9 */
/* Table 7.10 */

Initialize as follows for uncoupled portion of tbw channel:

Pseudocode
start = strtmant[ch] ;
end = endmant[ch] ;
lowcomp = 0;
fgain = fastgain[fgaincod[ch)); /* Table 7.11 *'
snroffsetrchl = llcsnroffst - 15) « 4 + fsnroffstrchll « 2 ;

Initialize as follows for coupling channel:
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start = cplstrtmant ;
end = cplendmant ;
fgain = fastgain[cplfgaincod]; /* Table 7.11 */
snroffset = «csnroffst - 15) « 4 + cplfsnroffst) « 2 ;
if (cpUeake)
{

fastleak = (cplfleak « 8) + 768 ;
slowleak = (cplsleak« 8) + 768 ;

}

Initialize as follows for Ife channel:

Pseudo code
start = Ifestrtmant ;
end = Ifeendmant ;
lowcomp= 0;
fgain = fastgain[lfefgaincod] ;
snroffset =«csnroffst - 15) « 4 + Ifefsnroffst) « 2 ;

7.2.2.2 Exponent Mapping into PSD

This step maps decoded exponents into a 13-bit signed log power-spectral density
function.

Pseudocode
for (bin=start; bin<end; bin++)
{

psd[bin] = (3072 - (exp[bin] « 7» ;
}

Since exp[k] assumes integral values ranging from 0 to 24, the dynamic range of
the psd[] values is from 0 (for the lowest-level signal) to 3072 for the highest-level signal.
The resulting function is represented on a fine-grain, linear frequency scale.

7.2.2.3 PSD Integration

This step of the algorithm integrates fine-grain PSD values within each of a
multiplicity of 1/6th octave bands. Table 7.12 contains the 50 array values for bndtab[]
and bndsz. The bndtab[] array gives the first mantissa number in each band. The bndsz[]
array provides the width of each band in number of included mantissas. Table 7.13
contains the 256 array values for masktab[], showing the mapping from mantissa number
into the associated 1/6 octave band number. These two tables contain duplicate
information, all of which need not be available in an actual implementation. They are
shown here for simplicity ofpresentation only.

The integration of PSD values in each band is performed with log-addition. The
log-addition is implemented by computing the difference between the two operands and
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using the absolute difference divided by 2 as an address into a length 256 lookup table,
latab[], shown in Table 7.14.

Pseudo code
j = start ;
k = masktab[start] ;
do
{

bndpsd[k] = psdDl ;
j++ ;
for (i = j; i < min(bndtab[k+1], end); i++)
{

bndpsd[k] = logadd(bndpsd[k], psdDD ;
j++ ;

}
k++ ;

}
while (end> bndtab[k++D ;
logadd(a, b)
{

c=a-b;
address = min«abs(c) » 1), 255) ;
if (c >= 0)
{

}
else
{

} }

retum(a + latab(address» ;

retum(b + latab(address» ;

7.2.2.4 Compute Excitation Function

The excitation function is computed by applying the prototype masking curve
selected by the encoder (and transmitted to the decoder) to the integrated PSD spectrum
(bndpsd[D. The result of this computation is then offset downward in amplitude by the
fgain and sgain parameters, which are also obtained from the bit stream.

Pseudo code
bndstrt = masktab[start] ;
bndend = masktab[end -1] + 1 ;
if (bndstrt == 0) /* For fbw and lfe channels */
{/* Note: Do not call calc_IowcompQ for the last band ofthe lfe channel, (i = 6) */

lowcomp = calc_lowcomp(lowcomp, bndpsd[O], bndpsd[1], 0) ;
excite[O] = bndpsd[O] - fastgain - lowcomp ;
lowcomp = calc_lowcomp(lowcomp, bndpsd[1], bndpsd[2], 1) ;
excite[1] = bndpsd[1] - fastgain -Iowcomp ;
begin = 7;
for (bin = 2; bin < 7; bin++)
{

lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;
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begin =bndstrt ;

a=384;

a = max(O, a - 64) ;

a = 320;

fastleak =bndpsd[bin] - fastgain ;
slowleak =bndpsd[bin] - slowgain ;
excite[bin] =max(fastleak - lowcomp, slowleak) ;
if (bndpsd[bin] <= bndpsd[bin+1])
{

begin = bin + 1 ;
break;

}
}
for (bin = begin; bin < min(bndend, 22); bin++)
{

lowcomp = calc_lowcomp(lowcomp, bndpsd[bin], bndpsd[bin+1], bin) ;
fastleak -= fastdec ;
fastleak = max(fastleak, bndpsd[bin] - fastgain) ;
slowleak -= slowdec ;
slowleak = max(slowleak, bndpsd[bin] - slowgain) ;
excite[bin] =max(fastleak - lowcomp, slowleak) ;

}
begin =22;

}
else /* For coupling channel */
{

}
for (bin = begin; bin < bndend; bin++)
{

fastleak -= fastdec ;
fastleak =max{fastleak, bndpsd[bin] - fastgain) ;
slowleak -= slowdec ;
slowleak = max(slowleak, bndpsd[bin] - slowgain) ;
exclte[bin] = max{fastleak, slowleak) ;

}
calcJowcomp(a, bO. b1, bin)
{

if (bin < 7)
{

if (bO + 256 == b1) ;
{

}
else if (bO > b1)
{

}
}
else if (bin < 20)
{

if (bO + 256 == b1)
{

}
else if (bO > b1)
{

a = max(O, a - 64) ;
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excite[bin] += «dbknee - bndpsd[bin]) » 2) ;

a = max(O, a - 128) ;
}
retum(a) ;

}

7.2.2.5 Compute Masking Curve

This step computes the masking (noise level threshold) curve from the excitation
function, as shown below. The hearing threshold hth[][] is shown in Table 7.15. The fscod
and dbpbcod variables are received by the decoder in the bit stream.

Pseudocode
for (bin = bndstrt; bin < bndend; bin++)
{

if (bndpsd[bin] < dbknee)
{

}
mask[bin] = max(excite[bin], hth[fscod][bin]) ;

}

7.2.2.6 Apply Delta Bit Allocation

The optional delta bit allocation information in the bit stream provides a means for
the encoder to transmit side information to the decoder which directly increases or
decreases the masking curve obtained by the parametric routine. Delta bit allocation can
be enabled by the encoder for audio blocks which derive an improvement in audio quality
when the default bit allocation is appropriately modified. The delta bit allocation option is
available for each fbw channel and the coupling channel.

In the event that delta bit allocation is not being used, and no dba information is
included in the bit stream, the decoder must not modifY the default allocation. One way to
insure this is to initialize the cpldeltnseg and deltnseg[ch] delta bit allocation variables to 0
at the beginning of each frame. This makes the dba processing (shown below) to
immediately terminate, unless dba information (including cpldeltnseg and deltnseg[ch]) is
included in the bit stream.

The dba information which modifies the decoder bit allocation are transmitted as
side information. The allocation modifications occur in the form of adjustments to the
default masking curve computed in the decoder. Adjustments can be made in multiples of
±6 dB. On the average, a masking curve adjustment of -6 dB corresponds to an increase
of 1 bit of resolution for all the mantissas in the affected 1/6th octave band. The following
code indicates, for a single channel, how the modification is performed. The modification
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calculation is performed on the coupling channel (where deltnseg below equals
cpldeltnseg) and on each fbw channel (where deltnseg equals deltnseg[ch]).

Pseudo code
if «deltbae == 0) II (deltbae == 1»
{

band = 0;
for (sag = 0; seg < deltnseg+1; seg++)
{

band += deltoffst[seg) ;
if (deltba[seg) >= 4)
{

delta = (deltba(seg) - 3) « 7 ;
}
else
{

delta = (deltba[seg) - 4) « 7 ;
}
for (k = 0; k < deltlen[seg); k++)
{

mask[band) += delta ;
band++ ;

}
}

}

7.2.2.7 Compute Bit Allocation

The bit allocation pointer array (bap[]) is computed in this step. The masking
CUlVe, adjusted by snroffset in an earlier step and then truncated, is subtracted from the
fine-grain psd[] array. The difference is right-shifted by 5 bits, thresholded, and then used
as an address into baptab[] to obtain the final allocation. The baptab[] array is shown in
Table 7.16.

The sum of all channel mantissa allocations in one frame is constrained by the
encoder to be less than or equal to the total number of mantissa bits available· for that
frame. The encoder accomplishes this by iterating on the values of csnroffst and fsnroffst
(or cplfsnroffst or lfefsnroffst for coupled and low frequency effects channels) to obtain an
appropriate result. The decoder is guaranteed to receive a mantissa allocation which meets
the constraints ofa fixed transmission bit-rate.

At the end of this step, the bap[] array contains a series of 4-bit pointers. The
pointers indicate how many bits are assigned to each mantissa. The correspondence
between bap pointer value and quantization accuracy is shown in Table 7.17.
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maskU) = 0;

maskDJ -= snroffset ;
maskDJ -= floor;
if (maskU) < 0)
{

}
maskU) &= Ox1 feO ;
maskDJ += floor;
for (k = i; k < min(bndtabU), end); k++)
{

address = (psd[i]· maskU» » 5 ;
address = min(63, max(O, address» ;
bap[i] = baptab[address] ;
i++ ;

}
}
while (end> bndtabri++l) ;

7.2.3 Bit Allocation Tables

Table 7.6 Slow decay table, slowdec[].

address slowdedaddressl
0 OxOf
1 Oxll
2 Ox13
3 Oxl5

Table 7.7 Fast decay table, fastdec[].

address fastdedaddressl
0 Ox3f
1 OXS3
2 Ox67
3 Ox7b

Table 7.8 Slow gain table, slowgain[].

address sloweainraddressl
0 OXS40
1 Ox4d8
2 Ox478
3 Ox410
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Table 7.9 dBlbit table, dbpbtab[].

address dbDbtabraddressl
0 OXOOO
1 Ox700
2 Ox900
3 OxbOO

Table 7.10 Floor table, floortab[].

address ftoortab[addressl
0 Ox2ID
1 Ox2bO
2 Ox270
3 Ox230
4 OxlID
5 Oxl7O
6 oxOto
7 OxfSOO

Table 7.11 Fast gain table, fastgain[].

address fast2ainladdressl
0 OX080
1 OxlOO
2 Oxl80
3 Ox200
4 Ox280
5 Ox300
6 Ox380
7 Ox400
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band # bndtabfbandl bDdszrband]
0 0 1
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1
7 7 1
8 8 1
9 9 1
10 10 1
11 11 1
12 12 1
13 13 1
14 14 1
15 15 1
16 16 1
17 17 1
18 18 1
19 19 1
20 20 1
21 21 1
22 22 1
23 23 1
24 24 1

band # blldtabfband] bndszfbandl
25 25 1
26 26 1
27 27 1
28 28 3
29 31 3
30 34 3
31 37 3
32 40 3
33 43 3
34 46 3
35 49 6
36 55 6
37 61 6
38 67 6
39 73 6
40 79 6
41 85 12
42 97 12
43 109 12
44 121 12
45 133 24
46 157 24
47 181 24
48 205 24
49 229 24
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Table 7.13 Bin number to band number table,
masktab[bin). bin = (10 x A) + B... 8-1 8-2 B-3 B-4 B-5 B-6 8-7 B-8 B-9

A-o 0 1 2 3 4 5 6 7 8 9
A-I 10 11 12 13 14 15 16 17 18 19
A-2 20 21 22 23 24 25 26 27 28 28
A-3 28 29 29 29 30 30 30 31 31 31
A-4 32 32 32 33 33 33 34 34 34 35
A~ 35 35 35 35 35 36 36 36 36 36
A-6 36 37 37 37 37 37 37 38 38 38
A-7 38 38 38 39 39 39 39 39 39 40
A-8 40 40 40 40 40 41 41 41 41 41
A-9 41 41 41 41 41 41 41 42 ' 42 42
A-I0 42 42 42 42 42 42 42 42 42 43
A-ll 43 43 43 43 43 43 43 43 43 43
A-12 43 44 44 44 44 44 44 44 44 44
A-13 44 44 44 45 45 45 45 45 45 45
A-14 45 45 45 45 45 45 45 45 45 45
A-15 45 45 45 45 45 45 45 46 46 46
A-16 46 46 46 46 46 46 46 46 46 46
A-17 46 46 46 46 46 46 46 46 46 46
A-IS 46 47 47 47 47 47 47 47 47 47
A-19 47 47 47 47 47 47 47 47 47 47
A-20 47 47 47 47 47 48 48 48 48 48
A-21 48 48 48 48 48 48 48 48 48 48
A-22 48 48 48 48 48 48 48 48 48 49
A-23 49 49 49 49 49 49 49 49 49 49
A=24 49 49 49 49 49 49 49 49 49 49
A=25 49 49 49 0 0 0
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Table 7.14 Log-addition table, latab[val]. val = (10 x A) + B
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, -'

B-o :&-1 B-2 B-3 B=4 1M B-6 B-7 B-S B-9
A-e 0x0040 OxOO3f OxOO3e 0x003d 0x003c 0x003b 0x003a 0x0039 OxOO38 OXOO37
A-I 0x0036 0x003S OXOO34 OXOO34 OXOO33 0x0032 OXOO31 OxOO30 OxOO2f OxOO2f
A-1 0x002e 0x002d OxOO2c OxOO2c OxOO2b 0x002a OXOO29 OXOO29 OXOO28 OXOO27
A-3 OxOO26 OXOO26 OXOO25 0x0024 OXOO24 0x0023 OxOO23 OxOO22 OXOO21 OxOO21
A-4 0x0020 OXOO20 OxOOlf OxOOle OxOOle OxOOld OxOOld OxOOlc OxOOlc OxOOlb
A-5 OxOOlb OxOOla OxOOla 0x0019 0x0019 0x0018 OXOO18 OxOO17 OXOO17 OxOO16
A-6 0x0016 0x001S OxOO1S OxOOlS OXOO14 0x0014 OXOO13 0x0013 OXOO13 OXOO12
A-7 0x0012 0x0012 OxOOll OxOOll OxOOll OxOOIO OxOOIO OxOOIO OxOOOf 0x000f
A-S 0x000f 0x000e 0x000e oxOOOe OxOOOd 0x000d OxOOOd 0x000d OxOOOc OxOOOc
AafJ 0x000c OXOOOC OxOOOb 0x000b OxOOOb 0x000b 0x000a OxOOOa OxOOOa OxOOOa
A-IO OxOOOa OXOOO9 OxOOO9 OXOOO9 OXOOO9 0x0009 0x0008 OxOOO8 OXOOO8 OxOOO8
A-U OXOOO8 OXOOO8 OXOOO7 OxOOO7 0x0007 0x0007 OXOOO7 OxOOO7 Ox0006 OXOO06
A-12 0x0006 Ox0006 Ox0006 Ox0006 OxOO06 Ox0006 Ox08OS OXOOOS OxOOOS OXOOO5
A-13 0x0005 OxOOOS OxOOO5 OXOOOS OxOOO4 0x0004 OxOOO4 OXOOO4 OXOOO4 OxOOO4
A-14 OXOOO4 OxOOO4 OXOOO4 OXOOO4 OXOOO4 OXOOO3 OXOOO3 OxOOO3 OXOOO3 OxOOO3
A-IS OxOOO3 OXOOO3 OxOOO3 OXOOO3 OXOOO3 0x0003 OXOOO3 OXOOO3 OXOOO3 OxOOO2
A-I' 0x0002 OXOOO2 0x0002 OXOOO2 OXOOO2 OXOOO2 OXOOO2 OxOOO2 OXOOO2 OXOOO2
A-17 OXOOO2 OxOOO2 OXOOO2 OxOOO2 OXOOO2 0x0002 OXOOO2 OXOOO2 OxOOOl OxOOOl
A-II OxOOOl 0x0001 OxOOOl OxOOOl OxOOOl OxOOOl OxOOOl OxOOOl OxOOOl OxOOOI
A-I' OxOOOl OxOOOl OxOOOl OxOOOl OxOOOl OxOOOl OxOOOl OxOOOl OxOOOl OxOOOI
A-20 0x0001 0x0001 OxOOOl OxOOOl OxOOOl OxOOOl OxOOOI OxOOOl OxOOOl OxOOOl
A-21 OxOOOO 0x0000 OxOOOO OxOOOO OxOOOO 0x0000 OxOOOO oxOOOO OxOOOO OXOOOO
A-21 OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO 0x0000 OXOOOO OxOOOO OxOOOO OXOOOO
A-23 OXOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO
A-U OxOOOO OxOOOO 0x0000 OXOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OXOOOO
A-15 OXOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO OxOOOO
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Table 7.15 Buriag threshold table, hth(fscod](band).
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bud II IlthfO)[band) 1l6(1)[b.u) J6(2)l'aacl
(f... kHz) (frroU.l kHz) (f.-32kHz)

0 0x04d0 Ox04fO 0x0580
1 0x04d0 Ox04fO 0x0580
2 0x0440 0x0460 0x04b0
3 0x0400 0x0410 Ox04S0
4 Ox03eO 0x03eO 0x0420
5 OX03CO Ox03dO 0x0310
6 0x03bO 0x03cO 0x03eO
7 0x03bO OxOlbO 0x03dO
8 0x03aO 0x03bO 0x03cO
9 0x03aO 0x03aO 0x03bO
10 0x03aO Ox03aO 0x03bO
11 Ox03aO Ox03aO 0x03bO
12 Ox03aO Ox03aO 0x03aO
13 0x0390 0x03aO 0x03aO
14 0x0390 OX0390 0x03aO
15 0x0390 0x0390 Ox03aO
16 OX0380 0x0390 Ox03aO
17 Ox0380 OX0380 0x03aO
18 0x0370 OX0380 0x03aO
19 0x0370 OX0380 0x03aO
20 0x0360 OX0370 0x0390
21 0x0360 OX0370 0x0390
22 0x0350 OX0360 0x0390
23 0x0350 OX0360 0x0390
24 0x0340 OX0350 0x0380

band IltIa(O)[ba htIa(l]lband] htIa(2J(band]
IlIIBIhe (fP48kBz) (f.......lkHzl (f..31kHz)

25 OX0340 OX0350 0x0380
26 OX0330 OX034O 0x0380
27 OX0320 Ox0340 Ox0370
28 OX0310 OX0320 0x0360
29 OX0300 OX0310 0x0350
30 0x0210 OX0300 0x0340
31 0x0210 0x02:tO 0x0330
32 OX021O 0x0210 0x0320
33 OX021O 0x02:ID Ox0310
34 OX0300 OX02:tO OX0300
35 0x0310 0x0300 0x02:ID
36 OX0340 0x0320 OX021O
37 OX0390 Ox0350 0x02iO
38 0x03eO OX0390 0x0300
39 Ox0420 Ox03eO OX0310
40 Ox046O OX0420 0x0330
41 Ox0490 Ox0450 0x0350
42 Ox04aO Ox04aO 0x03cO
43 Ox0460 0x0490 OX0410
44 Ox0440 OX0460 0x0470
45 Ox0440 Ox0440 Ox04aO
46 OX0520 0x0480 0x0460
47 OX0800 0x0630 OX0440
48 OX0840 0x084O Ox0450
49 OX0840 OX084O Ox04eO
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address baDtabladdrall
0 0
1 1
2 1
3 1
4 1
S 1
6 2
7 2
8 3
9 3
10 3
11 4
12 4
13 S
14 5
15 6
16 6
17 6
18 6
19 7
20 7
21 7
22 7
23 8
24 8
2S 8
26 8
27 9
28 9
29 9
30 9
31 10

addrea baotabladdressl
32 10
33 10
34 10
35 11
36 11
37 11
38 11
39 12
40 12
41 12
42 12
43 13
44 13
4S 13
46 13
47 14
48 14
49 14
50 14
51 14
S2 14
S3 14
54 14
55 15
56 15
57 15
58 15
59 15
60 15
61 15
62 15
63 15
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Table 7.17 Q.lUltizer levels and mantissa bits vs bap.

bap qautizer levels .....tiaabits
(D'OUD bits / mun in ft'OU.D)

0 0 0
1 3 1.67 (5/3)
2 5 2.33 (713)
3 7 3
4 11 3.5 (11/2)
5 15 4
6 32 5
7 64 6
8 128 7
9 256 8
10 512 9
11 1024 10
12 2048 11
13 4096 12
14 16.384 14
15 65.536 16
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7.3 Quantization and Decoding of Mantissas

7.3.1 Overview

All mantissas are quantized to a fixed level of precision indicated by the
corresponding bap. Mantissas quantized to 15 or fewer levels use symmetric quantization.
Mantissas quantized to more than 15 levels use asymmetric quantization which is a
conventional two's complement representation.

Some quantized mantissa values are grouped together and encoded into a common
codeword. In the case of the 3-level quantizer, 3 quantized values are grouped together
and represented by a 5-bit codeword in the data stream. In the case of the 5-level
quantizer, 3 quantized values are grouped and represented by a 7-bit codeword. For the
II-level quantizer, 2 quantized values are grouped and represented by an II-bit
codeword.

In the encoder, each transform coefficient (which is always < 1.0) is left justified
by shifting its binary representation left the number of times indicated by its exponent (0 to
24 left shifts). The amplified coefficient is then quantized to a number of levels indicated
by the corresponding bap.

The following table indicates which quantizer to use for each bap. If a bap equals
0, no bits are sent for the mantissa. Grouping is used for baps of 1, 2 and 4 (3, 5, and 11
level quantizers.)

-64-


